Abstract

The objective of this study was to investigate whether the n-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) can directly regulate glucose and fat metabolism in skeletal muscle besides exerting anti-inflammatory effects. To accomplish this, L6 skeletal muscle cells were treated with 50 µM of either DHA or EPA for 1, 3, and 5 days. Here, we report that basal and insulin-stimulated rates of glucose uptake, glycogen synthesis, protein kinase B (AKT), and glycogen synthase kinase 3 (GSK3) phosphorylation were not affected by DHA or EPA. However, glucose and palmitate oxidation were consistently elevated by DHA treatment, whereas EPA only increased this variable transiently. Similarly, only DHA caused significant and sustained increases in AMP-activated protein kinase (AMPK) phosphorylation and protein levels of carnitine-palmitoyl transferase-1b (CPT1b) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in skeletal muscle cells. DHA also caused a larger anti-inflammatory effect than EPA in these cells. In conclusion, besides exerting anti-inflammatory effects, DHA and EPA directly regulated glucose and fat metabolism in skeletal muscle cells, although DHA was more effective in doing so than EPA. Thus, by directly enhancing glucose and fat oxidation, DHA may increase glucose disposal and reduce intramyocellular lipid accumulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.