Abstract

ABSTRACTStudies of the life cycle of Myxosoma cerebralis showed that development of infectivity did not occur endogenously but that the spore “aging” process required participation of an aquatic tubificid oligochaete. Data suggestive of such involvement were derived from trials in which spores were “aged” in an array of inert, sterilized, pasteurized, or natural aquatic substrates and from examination of aquatic soils from trout hatcheries in which whirling disease was epizootic. The role of the aquatic oligochaete was confirmed two ways. First, signs of whirling disease developed, and M. cerebralis spores were produced in young rainbow trout (Salmo gairdneri) that had been fed oligochaetes harvested from pond soil taken from two hatcheries where whirling disease was epizootic. Second, when containers of pasteurized soil were populated with four genera of oligochaetes–Aeolosoma, Dero, Stylaria, or Tubifex– from a biological supply house, or with tubificid worms from trout hatcheries free of whirling disease, and then seeded with M. cerebralis spores and “aged” for 4 months, whirling disease occurred only in trout held with Tubifex and with hatchery tubificids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.