Abstract

Glycans and sugar-binding molecules (lectins) form an interactive recognition system, which may enable parasitic organisms to adhere to host cells and migrate into target tissues. The aim of the present study was to analyse surface-associated glycans in the developmental stages of Myxobolus cerebralis (Hofer), the causative agent of whirling disease. A panel of biotin-labelled plant lectins was used to detect a broad spectrum of glycan motifs with high specificity. Binding sites were detected histochemically in the tissue sections of infected rainbow trout, Oncorhynchus mykiss (Walbaum), and infected Tubifex tubifex (Müller), and were characterized by light, fluorescence and transmission electron microscopy. With mannose-specific lectins [Lens culinaris agglutinin, Pisum sativum agglutinin, Canavalia ensiformis agglutinin (LCA, PSA, CanA)] mannose-containing glycans were detected in all the developmental stages and host tissues. No binding sites for galactose-specific lectins were present in M. cerebralis spores but reactivity with host tissues occurred. Diversity in glycans was detected by N-acetyl-D-galactosamine-specific lectins in sporoplasm cells of M. cerebralis and triactinomyxon spores. In the group of lectins with monosaccharide-specificity for N-acetyl-D-glucosamine (GlcNAc), the reactivity of Datura stramonium agglutinin (DSA), Lycopersicon esculentum agglutinin (LEA) and Solanum tuberosum agglutinin (STA) was restricted to polar capsules whereas Griffonia simplicifolia agglutinin II (GSA II) also bound to sporoplasm cells of stages in the fish host but not in those present in infected T. tubifex. Moreover, Triticum vulgaris (wheat germ) agglutinin (WGA) and succinylated WGA indicated the presence of N-acetyl-D-glucosamine polymers in polar capsules. No specificity for spores was observed concerning 'bisected'N-glycans and no reactivity in parasitic stages was observed with the fucose-binding lectin Ulex europaeus agglutinin (UEA) I, Sambucus nigra agglutinin (SNA) (specific for alpha2,6-sialylated glycans) and Maackia amurensis agglutinin (MAAI) (specific for alpha2,3-sialylated glycans). Arachis hypogaea (peanut) agglutinin (PNA), Erythrina cristagalli agglutinin (ECA), GSA I, Sophora japonica agglutinin (SJA), Dolichos biflorus agglutinin (DBA) and GSA II detected reactive sites solely confined to the developmental stages of M. cerebralis and were not reactive in the fish host. These parasite-specific glycans may play a role in the adhesion process of the parasite to fish epidermis prior to infection, but may provide protection to the host by activating the complement system, or stimulating an adaptive immune response as putative antigens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.