Abstract
Myostatin, a negative regulator of skeletal muscle mass, is a proven candidate to modulate skeletal muscle mass through targeted gene knockdown approach. Here, we report myostatin (MSTN) knockdown in goat myoblasts stably expressing small hairpin RNA (shRNAs) against MSTN gene through lentivirus vector-mediated integration. We observed 72% (p = 0.003) and 54% (p = 0.022) downregulation of MSTN expression with sh2 shRNA compared to empty vector control and untransduced myoblasts, respectively. The knockdown of MSTN expression was accompanied with concomitant downregulation of myogenic regulatory factor MYOD (77%, p = 0.001), MYOG (94%, p = 0.000), and MYF5 (36%, p = 0.000), cell cycle regulator p21 (62%, p = 0.000), MSTN receptor ACVR2B (23%, p = 0.061), MSTN antagonist follistatin (81%, p = 0.000), and downstream signaling mediators SMAD2 (20%, p = 0.060) and SMAD3 (49%, p = 0.006). However, the expression of MYF6 was upregulated by 14% compared to control lentivirus-transduced myoblasts (p = 0.354) and 79% compared to untransduced myoblasts (p = 0.018) in sh2 shRNA-transduced goat myoblasts cells. Although, MSTN knockdown led to sustained cell proliferation of myoblasts, the myoblasts fusion was suppressed in both MSTN knocked down and control lentivirus-transduced myoblasts. The expression of interferon response gene OAS1 was significantly upregulated in control lentivirus (10.86-fold; p = 0.000)- and sh2 (1.71-fold; p = 0.002)-integrated myoblasts compared to untransduced myoblasts. Our study demonstrates stable knockdown of MSTN in goat myoblasts cells and its potential for use in generation of transgenic goat by somatic cell nuclear transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: In Vitro Cellular & Developmental Biology - Animal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.