Abstract

Small blood vessel diseases are often associated with impaired regulation of vascular tone. The current understanding of resistance arteries often focuses on how a level of vascular tone is achieved in the acute phase, while less emphasis is placed on mechanisms that maintain vascular tone. In this study, cannulated rat superior cerebellar arteries (SCA) developed spontaneous myogenic tone and showed a marked and sustained constriction in the presence of diluted serum (10%), a stimulus relevant to cerebrovascular disease. Both phosphorylated myosin light chain (MLC-p) and smooth muscle alpha actin (SM-α-actin) aligned with phalloidin-stained actin filaments in the vessel wall, while exhibiting a ‘high to low’ gradient across the layers of vascular smooth muscle cells (VSMC), peaking in the outer layer. The MLC-p distribution profile shifted towards the adventitia in serum treated vessels, while removal of the serum reversed it. Furthermore, a positive correlation between the MLC-p signal and vessel wall tension was also evident. The gradients of phosphorylated MLC and SM-α-actin are consistent with a spatial regulation of the myosin-actin apparatus in the vessel wall during the maintenance of vascular tone. Further, the changing profiles of MLC-p and SM-α-actin are consistent with SCA vasoconstriction being accompanied by VSMC cytoskeletal reorganization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call