Abstract
An attempt was made to determine whether phosphorylation of the myosin light chain represents a thick filament-associated mechanism for modulating the rate of cross-bridge cycling in mouse skeletal muscle. When the degree of light chain phosphorylation was varied independently of tetanus duration, there was no correlation of phosphorylation with cross-bridge turnover rate, as measured by the shortening velocity of the muscle. It is concluded that in intact skeletal muscle phosphorylation of the myosin light chain does not in itself modulate cross-bridge cycling rate and that previously reported changes in cycling rate were due to other factors that may vary with tetanus duration.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have