Abstract
The interaction of the αα, ββ, and αβ smooth muscle tropomyosin (Tm) isoforms with F-actin was systematically studied in the absence and in the presence of myosin subfragment 1 (S1) using multifrequency phase/modulation Förster resonance energy transfer (FRET). A Gaussian double distance distribution model was adopted to fit FRET data between a 5-(2-iodoacetyl-amino-ethyl-amino)naphthalene-1-sulfonic acid donor at either Cys-36 of the β-chain or Cys-190 of the α-chain and a 4-dimethylaminophenylazophenyl 4′-maleimide acceptor at Cys-374 of F-actin. Experimental data were obtained for singly and doubly labeled αβ Tm (donor only at α, only at β, or both) and for doubly labeled αα or ββ Tm. Data for singly labeled αβTm were combined in a global analysis with doubly labeled αβTm. In all doubly labeled isoforms, upon S1 binding, one donor-acceptor “apparent” distance increased slightly by 0.5–2 Å, whereas the other decreased by 6–9 Å. These changes are consistent with a uniform “rolling” motion of Tm over the F-actin surface. The analysis indicates that Tm occupies relatively well-defined positions, with some flexibility, in both the predominantly closed (−S1) and open (+S1) thin-filament states. The results for the αβTm heterodimer indicate that the local twofold symmetry of αα or ββ Tm is effectively broken in αβTm bound to F-actin, which implies a difference between the α- and β-chains in terms of their interaction with F-actin.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have