Abstract
Myosin-6 is a reverse-directed, actin-based, molecular motor responsible for moving cellular cargo towards the minus-end of actin filaments. It is involved in clathrin-mediated endocytosis and intracellular transport. We have used TIRF microscopy to study the movement and localisation of the “short insert” isoform of eGFP-myosin-6 within live 3T3 fibroblasts and human endothelial cells. Individual GFP tagged myosin-6 particles were automatically tracked by computer. Diffusion of membrane associated proteins is usually controlled by lipid mobility and individual trajectories follow a simple “random walk” in which mean squared displacement (MSD) is proportional to time interval (dT) and the lateral diffusion coefficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.