Abstract
Pressure-induced activation of vascular smooth muscle may involve electromechanical as well as nonelectromechanical coupling mechanisms. We compared calcium-tone relations of cannulated rat mesenteric small arteries during pressure-induced activation, depolarization (16 to 46 mmol/L K+), and alpha1-adrenergic stimulation (1 micromol/L phenylephrine). The intracellular calcium concentration was expressed as the fura-2 ratio, normalized to the maximal and minimal ratios. In order to compare activation levels at various pressures, tone was expressed as the ratio of active wall tension to the maximal active tension. The passive and maximal active pressure-diameter relations needed for the calculation of tone were determined in a separate set of experiments, using isometric loading of cannulated vessels. Pressure steps from 20 to 60 and then to 100 mm Hg caused a modest rise of calcium. Nifedipine (1 micromol/L) blocked both the calcium rise and the resulting myogenic responses. Electromechanical coupling could not fully account for the myogenic response: the calcium sensitivity, defined as the slope of the calcium-tone relation, was five times higher during pressure-induced activation compared with potassium stimulation and twice as high as the sensitivity during alpha1-adrenergic stimulation. We therefore conclude that the myogenic response involves a small but necessary rise in calcium due to influx through L-type calcium channels, as well as a nonelectromechanical coupling mechanism that greatly enhances the calcium sensitivity of the contractile machinery.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have