Abstract

AimsTo evaluate a novel post-processing method for assessment of longitudinal mid-myocardial strain in standard cine cardiac magnetic resonance (CMR) imaging sequences. Methods and resultsCine CMR imaging and tagged cardiac magnetic resonance imaging (TMRI) were performed in 15 patients with acute myocardial infarction (AMI) and 15 healthy volunteers served as control group. A second group of 37 post-AMI patients underwent both cine CMR and late gadolinium enhancement (LGE) CMR exams. Speckle tracking echocardiography (STE) was performed in 36 of these patients. Cine CMR, TMRI and STE were analyzed to obtain longitudinal strain. LGE-CMR datasets were analyzed to evaluate scar extent. Comparison of peak systolic strain (PSS) measured from CMR and TMRI yielded a strong correlation (r=0.86, p<0.001). PSS measured from CMR and STE correlated well (r=0.75, p<0.001). A cutoff longitudinal PSS value of −13.14% differentiated non-infarction from any infarcted myocardium, with a sensitivity of 93% and a specificity of 89% (area under curve (AUC) 0.95). PSS value of −9.39% differentiated non-transmural from transmural infarcted myocardium, with a sensitivity of 75% and a specificity of 67% (AUC 0.78). ConclusionThe present study showed a novel off-line post-processing method for segmental longitudinal strain analysis in mid-myocardium layer based on cine CMR data. The method was found to be highly correlated with strain measurements obtained by TMRI and STE. This tool allows accurate discrimination between different transmurality states of myocardial infarction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call