Abstract

Vascular remodeling is a pertinent target for cardiovascular therapy. Vascular smooth muscle cell (VSMC) dysfunction plays a key role in vascular remodeling. Myeloid differentiation 2 (MD2), a cofactor of toll-like receptor 4 (TLR4), is involved in atherosclerotic progress and cardiac remodeling via activation of chronic inflammation. In this study, we explored the role of MD2 in vascular remodeling using an Ang II-induced mouse model and cultured human aortic VSMCs. MD2 deficiency suppressed Ang II-induced vascular fibrosis and phenotypic switching of VSMCs without affecting blood pressure in mice. Mechanistically, MD2 deficiency prevented Ang II-induced expression of inflammatory cytokines and oxidative stress in mice and cultured VSMCs. Furthermore, MD2 deficiency reversed Ang II-activated MAPK signaling and Ang II-downregulated SIRT1 expression. Taken together, MD2 plays a significant role in Ang II-induced vascular oxidative stress, inflammation, and remodeling, indicating that MD2 is a potential therapeutic target for the treatment of vascular remodeling-related cardiovascular diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call