Abstract

Type 2 immune response has been shown to facilitate cold-induced thermogenesis and browning of white fat. However, whether alternatively activated macrophages produce catecholamine and substantially promote adaptive thermogenesis in adipose tissue remains controversial. Here, we show that tyrosine hydroxylase (TyrH), a rate-limiting enzyme of catecholamine biosynthesis, was expressed and phosphorylated in adipose-resident macrophages. In addition, the plasma level of adrenaline was increased by cold stress in mice, and treatment of macrophages with adrenaline stimulated phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and TyrH. Genetic and pharmacological inhibition of CaMKII or PKA signaling diminished adrenaline-induced phosphorylation of TyrH in primary macrophages. Consistently, overexpression of constitutively active CaMKII upregulated basal TyrH phosphorylation, while suppressing the stimulatory effect of adrenaline on TyrH in macrophages. Myeloid-specific disruption of CaMKIIγ suppressed both the cold-induced production of norepinephrine and adipose UCP1 expression in vivo and the stimulatory effect of adrenaline on macrophage-dependent activation of brown adipocytes in vitro. Lack of CaMKII signaling attenuated catecholamine production mediated by cytokines IL-4 and IL-13, key inducers of type 2 immune response in primary macrophages. Taken together, these results suggest a feedforward mechanism of adrenaline in adipose-resident macrophages, and that myeloid CaMKII signaling plays an important role in catecholamine production and subsequent beige fat activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call