Abstract

The ehrlichiae are small Gram-negative obligate intracellular bacteria in the family Anaplasmataceae. Ehrlichial infection in an accidental host may result in fatal diseases such as human monocytotropic ehrlichiosis, an emerging, tick-borne disease. Although the role of adaptive immune responses in the protection against ehrlichiosis has been well studied, the mechanism by which the innate immune system is activated is not fully understood. Using Ehrlichia muris as a model organism, we show here that MyD88-dependent signaling pathways play a pivotal role in the host defense against ehrlichial infection. Upon E. muris infection, MyD88-deficient mice had significantly impaired clearance of E. muris, as well as decreased inflammation, characterized by reduced splenomegaly and recruitment of macrophages and neutrophils. Furthermore, MyD88-deficient mice produced markedly lower levels of IL-12, which correlated well with an impaired Th1 immune response. In vitro, dendritic cells, but not macrophages, efficiently produced IL-12 upon E. muris infection through a MyD88-dependent mechanism. Therefore, MyD88-dependent signaling is required for controlling ehrlichial infection by playing an essential role in the immediate activation of the innate immune system and inflammatory cytokine production, as well as in the activation of the adaptive immune system at a later stage by providing for optimal Th1 immune responses.

Highlights

  • The mammalian innate immune system detects the presence of microbial infection through germ line-encoded pattern recognition receptors (PRRs)

  • There was a high level of IL-12 p40 and IL-12 p70 in the serum of wild-type mice infected with E. muris, whereas MyD88-deficient mice produced a significantly lower level of these cytokines (Figure 1B)

  • Intracellular bacteria grow in either in the cytoplasm or in specialized organelles that do not fuse with lysosomes, and must have strategies to escape from innate immune surveillance

Read more

Summary

Introduction

The mammalian innate immune system detects the presence of microbial infection through germ line-encoded pattern recognition receptors (PRRs). Toll-like receptors (TLRs), RIG-like receptors (RLRs) and nucleotide-binding oligomerization domain-leucine rich repeat containing (NLR) proteins serve as PRRs that recognize different but overlapping microbial components, frequently referred to as pathogen-associated molecular patterns (PAMPs) [1]. TLRs detect microbial infection and activate downstream signaling cascades such as the activation of MAP kinases and NF-kB. Phylogenetic analysis groups the TLRs into six categories [2], and TLRs in each branch have similar ligands [2]; the TLR1 group, which includes TLR2/6/10, is specific for lipoproteins, TLR4 for LPS, TLR3/7 and TLR8/9 for RNA and DNA, TLR5 for flagellin, and TLR11 for protein(s) [2]. TLRs localize to different cellular compartments to facilitate ligand recognition [3]. TLRs can localize to the cell surface (TLR1,2,5,6,10), endosomal surface (TLR3,7,8,9), or both (TLR4,11,12,13) [3,4]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call