Abstract

Most plant species form mycorrhizae, which are symbiotic fungus-root associations. Many plants can also form symbioses with specific bacteria or actinomycetes which produce root nodules and fix atmospheric nitrogen within these nodules. The tripartite mycorrhiza-legume-Rhizobium symbiosis is the subject of this review. Mycorrhizal nitrogen-fixing legumes include many important temperate and tropical crops, e.g. clover, lucerne, beans (Phaseolus andVicia), peas, soybean, cowpea, pigeonpea, groundnuts,Stylosanthes, Pueraria andCentrosema. These forage and grain legumes form endomycorrhiza of the vesicular-arbuscular (VA) type, as do most species of the Mimosoideae and Papilionoideae. Some arborescent legumes also form VA mycorrhiza, e.g.Leucaena, but many, especially the Caesalpinoideae, form mycorrhiza of the ecto-type; some, e.g.Acacia, have both ecto- and VA mycorrhiza. In some legumes, e.g. clover andStylosanthes, mycorrhizal fungi can densely colonize>70% of the root system; in others, e.g. lupins, mycorrhizal infection is usually light. Unlike theRhizobium symbiosis, mycorrhizal symbioses are essentially non-specific. The ability of mycorrhizae to increase plant uptake of phosphate and alleviate P-stress in P-deficient soils leads to increases in nodulation, nitrogen-fixation, P concentration and plant growth. Mycorrhizae also affect trace element uptake, e.g. Cu and Zn, photosynthate supply, water relations and hormonal balance in legumes. Some legumes grow so poorly without mycorrhiza as to be ecologically obligately mycorrhizal. To some extent root geometry determines the degree of dependence of a legume on mycorrhiza, because the fungal hyphae extend the absorbing surface of the root. Where a legume is growing with a non-mycotrophic plant, its competitive ability can be increased by mycorrhiza. Environmental factors and inputs of P and N fertilizer affect the effectiveness of theRhizobium-mycorrhiza interaction. Also disease tolerance of legumes can be affected by mycorrhiza. The practical impact of mycorrhiza in nitrogen-fixing legumes may be considerable. Dual inoculation of leguminous crops with elite strains of mycorrhizal fungi andRhizobium bacteria, in conjunction with minimal N fertilizer and better utilization of less P fertilizer (rock or super), is currently being studied in many countries. Inoculation techniques are being developed for exploitation on a field scale. It is hoped that further investigations, especially in low-input cropping systems, will enable the substantial potential of mycorrhiza in legume productivity to be achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.