Abstract

Vitamin K epoxide reductase complex, subunit 1 (VKORC1) is a critical participant in the production of active forms of reduced vitamin K and is required for modification of vitamin K-dependent proteins. Homologues of VKORC1 (VKORH) exist throughout evolution, but in bacteria they appear to function in oxidative protein folding as well as quinone reduction. In the current study we explore two questions: Do VKORHs function in the mammalian vitamin K cycle? Is the pair of loop cysteines-C43 and C51 in human VKORC1-conserved in all VKORC1s, essential for the activity of vitamin K epoxide reduction? We used our recently developed cell-based assay to compare the function of VKORHs to that of human VKORC1 in mammalian cells. We identified for the first time a VKORH (from Mycobacterium tuberculosis [Mt-VKORH]) that can function in the mammalian vitamin K cycle with vitamin K epoxide or vitamin K as substrate. Consistent with our previous in vitro results, the loop cysteines of human VKORC1 are not essential for its activity in vivo. Moreover, the corresponding loop cysteines of Mt-VKORH (C57 and C65), which are essential for its activity in disulfide bond formation during protein folding in Escherichia coli, are not required in the mammalian vitamin K cycle. Our results indicate that VKORC1 in eukaryotes and Mt-VKORH in bacteria, that is, in their respective native environments, employ apparently different mechanisms for electron transfer. However, when Mt-VKORH is in the mammalian cell system, it employs a mechanism similar to that of VKORC1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call