Abstract

Mycobacterium tuberculosis (Mtb) survives under oxidatively and nitosatively hostile niches inside host phagocytes. In other bacteria, adaptation to these stresses is dependent upon the redox sensitive two component systems (e.g., ArcAB) and transcription factors (e.g., FNR/SoxR). However, these factors are absent in Mtb. Therefore, it is not completely understood how Mtb maintains survival and redox balance in response to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Here, we present evidences that a 4Fe-4S-cofactor containing redox-sensitive transcription factor (WhiB3) is exploited by Mtb to adapt under ROS and RNS stress. We show that MtbΔwhiB3 is acutely sensitive to oxidants and to nitrosative agents. Using a genetic biosensor of cytoplasmic redox state (Mrx1-roGFP2) of Mtb, we show that WhiB3 facilitates recovery from ROS (cumene hydroperoxide and hydrogen peroxide) and RNS (acidified nitrite and peroxynitrite). Also, MtbΔwhiB3 displayed reduced survival inside RAW 264.7 macrophages. Consistent with the role of WhiB3 in modulating host-pathogen interaction, we discovered that WhiB3 coordinates the formation of early human granulomas during interaction of Mtb with human peripheral blood mononuclear cells (PBMCs). Altogether, our study provides empirical proof that WhiB3 is required to mitigate redox stress induced by ROS and RNS, which may be important to activate host/bacterial pathways required for the granuloma development and maintenance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.