Abstract
Johne's disease is a chronic wasting disease of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Closely related pathogenic mycobacteria such as M. tuberculosis are capable of altering host lipid metabolism, highlighting the need to explore the role of lipid metabolism contributing to intracellular survival. This study aimed to identify whether MAP is able to manipulate host lipid metabolic pathways and accumulate host cholesterol during early infection. Macrophages were exposed to four different MAP strains and non-pathogenic M. phlei for up to 72 h, with changes to lipid metabolism examined using fluorescent microscopy and gene expression. MAP-infected macrophages displayed strain-dependent differences to intracellular cholesterol levels during early infection, however showed similarly increased intracellular cholesterol at later timepoints. Gene expression revealed that MAP strains similarly activate the host immune response in a conserved manner compared to M. phlei. MAP significantly upregulated host genes associated with lipid efflux and endocytosis. Moreover, lipid biosynthesis genes were differentially regulated in a strain-dependent manner following MAP infection. Collectively, these results demonstrate that MAP manipulates host lipid metabolism during early infection, however the extent of these modulations are strain-dependent. These findings reflect a conserved pathway contributing to intracellular MAP survival.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have