Abstract

Microwave communication devices necessitate elements with high electrical conductivity, a property which wastraditionally found in metals (e.g., copper). However, in applications such as satellite communications, metals prevent the payload from achieving lightweight and flexible characteristics. Here, wedemonstrate the development of MXene film microwave resonators, leveraging MXene's high electrical conductivity and unique mechanical properties. To investigate resonant performance in humid conditions and study the effects of MXene's processing and treatment, MXene films with different flake sizes are prepared and exposed to cyclic humidity. For the large- and small-flake Ti3 C2 MXene films in cyclic humidity, the large-flake film demonstrates higher electrical conductivity, higher resonance quality factor (150 and 35 as unloaded, and loaded), and less fluctuation of performance (≈1.7% total shift in resonance frequency). Further, by implementing MXene films of two different diameters, the correlation between film size and resonant frequency is demonstrated. By introducing an active resonant configuration, the effect of MXene degradation and microwave losses can be compensated. This active feedback loop demonstrates a ≈300 times increase in the quality factor of MXene resonators. As a building block for terrestrial and satellite communication modules, MXene resonators potentiate the replacement of metals in achieving unique electrical and mechanical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call