Abstract

Unmanned Aerial Vehicles (UAVs) have gained popularity due to their low lifecycle cost and minimal human risk, resulting in their widespread use in recent years. In the UAV swarm cooperative decision domain, multi-agent deep reinforcement learning has significant potential. However, current approaches are challenged by the multivariate mission environment and mission time constraints. In light of this, the present study proposes a meta-learning based multi-agent deep reinforcement learning approach that provides a viable solution to this problem. This paper presents an improved MAML-based multi-agent deep deterministic policy gradient (MADDPG) algorithm that achieves an unbiased initialization network by automatically assigning weights to meta-learning trajectories. In addition, a Reward-TD prioritized experience replay technique is introduced, which takes into account immediate reward and TD-error to improve the resilience and sample utilization of the algorithm. Experiment results show that the proposed approach effectively accomplishes the task in the new scenario, with significantly improved task success rate, average reward, and robustness compared to existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.