Abstract

This paper proposes an energy-efficient scheduling scheme for multi-path TCP (MPTCP) in heterogeneous wireless networks, aiming to minimize energy consumption while ensuring low latency and high throughput. Each MPTCP sub-flow is controlled by an agent that cooperates with other agents using the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm. This approach enables the agents to learn decentralized policies through centralized training and decentralized execution. The scheduling problem is modeled as a multi-agent decision-making task. The proposed energy-efficient scheduling scheme, referred to as EE-MADDPG, demonstrates significant energy savings while maintaining lower latency and higher throughput compared to other state-of-the-art scheduling techniques. By adopting a multi-agent deep reinforcement learning approach, the agents can learn efficient scheduling policies that optimize various performance metrics in heterogeneous wireless networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call