Abstract
Fine-grained urban traffic data are often incomplete owing to limitations in sensor technology and economic cost. However, data-driven traffic analysis methods in intelligent transportation systems (ITSs) heavily rely on the quality of input data. Thus, accurately estimating missing traffic observations is an essential data engineering task in ITSs. The complexity of underlying node-wise correlation structures and various missing scenarios presents a significant challenge in achieving high-precision estimation. This study proposes a novel multiview neural network termed MVCV-Traffic, equipped with a cross-view learning mechanism, to improve traffic estimation. The contributions of this model can be summarized into two parts: multiview learning and cross-view fusing. For multiview learning, several specialized neural networks are adopted to fit diverse correlation structures from different views. For cross-view fusing, a new information fusion strategy merges multiview messages at both feature and output levels to enhance the learning of joint correlations. Experiments on two real-world datasets demonstrate that the proposed model significantly outperforms existing traffic speed estimation methods for different types and rates of missing data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geographical Information Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.