Abstract

We present a new method of self-supervised learning and knowledge distillation based on multi-views and multi-representations (MV-MR). MV-MR is based on the maximization of dependence between learnable embeddings from augmented and non-augmented views, jointly with the maximization of dependence between learnable embeddings from the augmented view and multiple non-learnable representations from the non-augmented view. We show that the proposed method can be used for efficient self-supervised classification and model-agnostic knowledge distillation. Unlike other self-supervised techniques, our approach does not use any contrastive learning, clustering, or stop gradients. MV-MR is a generic framework allowing the incorporation of constraints on the learnable embeddings via the usage of image multi-representations as regularizers. The proposed method is used for knowledge distillation. MV-MR provides state-of-the-art self-supervised performance on the STL10 and CIFAR20 datasets in a linear evaluation setup. We show that a low-complexity ResNet50 model pretrained using proposed knowledge distillation based on the CLIP ViT model achieves state-of-the-art performance on STL10 and CIFAR100 datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.