Abstract
Consider a set of autonomous, identical, opaque point robots in the Euclidean plane. The Mutual Visibility problem asks the robots to reposition themselves, without colliding, to a configuration where they all see each other, i.e., no three of them are collinear. In this paper, we consider the problem in a grid based terrain where the movements of the robots are restricted only along grid lines and only by a unit distance in each step. We consider the luminous robots model, in which each robot is equipped with an externally visible light which can assume a constant number of predefined colors. These colors serve both as internal memory and as a form of communication. The robots operate in Look-Compute-Move cycles under a fully asynchronous scheduler. The robots do not have any common global coordinate system or chirality and do not have the knowledge of the total number of robots. Our proposed distributed algorithm solves the problem for any arbitrary initial configuration and guarantees collision-free movements.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have