Abstract

The correlation between the microstructure, the mechanical properties and the fatigue life of the common aluminum cast alloy Al-7Si-0.3Mg (A356) was investigated. By variation the solution heat treatment temperatures and times the precipitation strengthening effect in the dendritic aluminum solid solution phase and the spheroidization of the eutectic silicon were modified. The results of fully reversed fatigues tests revealed an increase in the fatigue life of specimens that were heat treated at higher temperatures. This observation was supported by analyzing the fatigue crack propagation behavior using the direct current potential drop technique (DCPD). With (i) increasing heat treatment temperature, i.e., increasing dendritic α-Al strength and (ii) roundness of the eutectic silicon particles the resistance to technical fatigue crack initiation, expressed by the threshold value of the stress intensity range Kth, was shifted to higher values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.