Abstract

Measuring model performance is a key issue for deep learning practitioners. However, we often lack the ability to explain why a specific architecture attains superior predictive accuracy for a given data set. Often, validation accuracy is used as a performance heuristic quantifying how well a network generalize to unseen data. Mutual information can be used as a measure of the quality of internal representations in deep learning models, and the information plane provide insights into whether the model exploits the available information in data.
 The information plane has previously been explored for fully connected neural networks and convolutional architectures. We present an architecture-agnostic method for tracking a network's internal representations during training, which are then used to create the mutual information plane. The method is exemplified for a graph convolutional neural network fitted on the Cora citation data. We compare how the inductive bias introduced in the graph convolutional architecture changes the mutual information plane relative to a fully connected neural network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.