Abstract

Using primary cultures of immature rat granulosa cells and adenoviral infections we expressed two mutants of the human lutropin receptor (hLHR) that do not activate the phosphoinositide cascade. One mutant (hLFF) has the extracellular domain of the hLHR and the transmembrane and intracellular domains of the hFSHR. The other (hLHR-L457D) has a leucine to aspartate mutation in residue 457 of transmembrane helix 3. When expressed in immature rat granulosa cells the hLHR stimulates cAMP and inositol phosphate accumulation, transactivates the epidermal growth factor receptor (EGFR), elicits a transient increase in Akt phosphorylation, and a sustained increase in ERK1/2 phosphorylation but aromatase expression is not enhanced. When expressed at comparable densities, hLFF and hLHR-L457D support cAMP accumulation and transient Akt phosphorylation but do not support inositol phosphate accumulation, EGFR transactivation or a sustained phosphorylation of ERK1/2. Cells expressing either of these two mutants respond to hCG with increased aromatase expression. We also show that addition of hCG to cells expressing the hLHR antagonizes the effects of hFSH on aromatase expression whereas addition of hCG to cells expressing the hLHR-L457D mutant does not. These results show that activation of the phosphoinositide cascade is upstream of EGFR transactivation and ERK1/2 phosphorylation and that this pathway is a negative regulator of aromatase expression in granulosa cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.