Abstract

Ginsenosides, active ingredients of Panax ginseng, exist as stereoisomers depending on the position of the hydroxyl group on carbon-20; i.e. 20(R)-ginsenoside and 20(S)-ginsenoside are epimers. We previously investigated the structure-activity relationship of the ginsenoside Rg(3) stereoisomers, 20-R-protopanaxatriol-3-[O-beta-D-glucopyranosyl (1-->2)-beta-glucopyranoside], (20(R)-Rg(3)) and 20-S-protopanaxatriol-3-[O-beta-D-glucopyranosyl (1-->2)-beta-glucopyranoside], (20(S)-Rg(3)) in regulating 5-HT(3A) receptor-mediated ion currents (I(5-HT)) expressed in Xenopus oocytes and found that 20(S)-Rg(3) rather than 20(R)-Rg(3) was more stronger inhibitor of I(5-HT). In the present study, we further investigated the effects of 20(R)-Rg(3) and 20(S)-Rg(3) on mouse 5-HT(3A) receptor channel activity after site-directed mutations of 5-HT(3A) receptor facilitation site, which is located at pre-transmembrane domain I (pre-TM1). 5-HT(3A) receptor was expressed in Xenopus oocytes, and I(5-HT) was measured using two-electrode voltage clamp technique. In wild-type, both 20(R)-Rg(3) and 20(S)-Rg(3) inhibited I(5-HT) with concentration-dependent and reversible manner. Induction of 5-HT(3A) receptor facilitation by point mutations of pre-TM1 amino acid residue R222 to R222A, R222D, R222E or R222T not only decreased EC(50) values for I(5-HT) compared to wild-type but also abolished 20(R)-Rg(3)-induced inhibition of I(5-HT). Those mutations also shifted the IC(50) values by 20(S)-Rg(3) into right direction by 2- to 4-folds compared with wild-type. These results indicate that 5-HT(3A) receptor facilitation differentially affects 20(R)-Rg(3)- and 20(S)-Rg(3)-mediated 5-HT(3A) receptor channel regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.