Abstract

Resveratrol, which is found in grapes, red wine, and berries, has many beneficial health effects, such as anti-cancer, neuro-protective, anti-inflammatory, and life-prolonging effects. However, the cellular mechanisms by which resveratrol acts are relatively unknown, especially in terms of possible regulation of receptors involved in synaptic transmission. 5-Hydroxytryptamine type 3A (5-HT(3A)) receptor is one of several ligand-gated ion channels involved in fast synaptic transmission. In the present study, we investigated the effect of resveratrol on mouse 5-HT(3A) receptor channel activity. 5-HT(3A) receptor was expressed in Xenopus oocytes, and the current was measured using a two-electrode voltage clamp technique. Treatment of resveratrol itself had no effect on the oocytes injected with H(2)O as well as on the oocytes injected with 5-HT(3A) receptor cRNA. In the oocytes injected with 5-HT(3A) receptor cRNA, co- or pre-treatment of resveratrol with 5-HT potentiated 5-HT-induced inward peak current (I(5-HT)) with concentration-, reversible, and voltage-independent manners. The EC(50) of resveratrol was 28.0±2.4 µM. The presence of resveratrol caused a leftward shift of 5-HT concentration-response curve. Protein kinase C (PKC) activator or inhibitor had no effect on resveratrol action on I(5-HT). Site-directed mutations of pre-transmembrane domain 1 (pre-TM1) such as R222A, R222D, R222E, R222K, and R222T abolished or attenuated resveratrol-induced enhancement of I(5-HT), indicating that resveratrol might interact with pre-TM1 of 5-HT(3A) receptor. These results indicate that resveratrol might regulate 5-HT(3A) receptor channel activity via interaction with the N-terminal domain and these results further show that resveratrol-mediated regulation of 5-HT(3A) receptor channel activity might be one of cellular mechanisms of resveratrol action.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.