Abstract

To get new insights into the function of the intermediate filament (IF) protein vimentin in cell physiology, we generated two mutant cDNAs, one with a point mutation in the consensus motif in coil1A (R 113C) and one with the complete deletion of coil 2B of the rod domain. In keratins and glia filament protein (GFAP), analogous mutations cause keratinopathies and Alexander disease, respectively. Both mutants prevented filament assembly in vitro and inhibited assembly of wild-type vimentin when present in equal amounts. In stably transfected preadipocytes, these mutants caused the complete disruption of the endogenous vimentin network, demonstrating their dominant-negative behaviour. Cytoplasmic vimentin aggregates colocalised with the chaperones αB-crystallin and HSP40. Moreover, vimR 113C mutant cells were more resistant against staurosporine-induced apoptosis compared to controls. We hypothesise that mutations in the vimentin gene, like in most classes of IF genes, may contribute to distinct human diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call