Abstract
Allogeneic serum and tissue-specific extracellular matrix have been shown to maintain permanently differentiated cell phenotype in culture. This is of particular importance for human tenocytes, a cell population that readily loses its function during ex vivo culture. With these in mind, herein we extracted human tenocytes using either foetal bovine serum or human serum, cultured them in the absence and presence of carrageenan and Ficoll®, the most widely used macromolecular crowding agents (to induce tissue-specific extracellular matrix deposition), and assessed cellular function, via metabolic activity, viability, proliferation and immunofluorescence for collagen related molecules, non-collagenous molecules and transmembrane molecules. At day 7, longest time point assessed, neither carrageenan nor Ficoll® significantly affected metabolic activity, viability and proliferation in either serum and human serum significantly increased metabolic activity and proliferation. At day 7, in the absence of macromolecular crowding, cells in human serum deposited significantly lower collagen type VI, biglycan, versican and tenomodulin than cells in foetal bovine serum. Interestingly, at day 7, in comparison to the no macromolecular crowding group, carrageenan in foetal bovine serum induced the highest effect, as judged by the highest number of significantly increased molecules (collagen type I, collagen type IV, collagen type V, collagen type VI, transforming growth factor β1, matrix metalloproteinase 14, lumican, versican, scleraxis and integrin α2β1). These data, although contradict previous observations where human serum outperformed foetal bovine serum, at the same time, support the use of foetal bovine serum in the development of cell-based medicines.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.