Abstract
Ionizing radiation induces DNA double-strand breaks (DSBs). Mammalian cells repair DSBs through multiple pathways, and the repair pathway that is utilized may affect cellular radiation sensitivity. In this study, we examined effects on cellular radiosensitivity resulting from functional alterations in homologous recombination (HR). HR was inhibited by overexpression of the forkhead-associated (FHA) domain-mutated NBS1 (G27D/R28D: FHA-2D) protein in HeLa cells or in hamster cells carrying a human X-chromosome. Cells expressing FHA-2D presented partially (but significantly) HR-deficient phenotypes, which were assayed by the reduction of gene conversion frequencies measured with a reporter assay, a decrease in radiation-induced Mre11 foci formation, and hypersensitivity to camptothecin treatments. Interestingly, ectopic expression of FHA-2D did not increase the frequency of radiation-induced somatic mutations at the HPRT locus, suggesting that a partial reduction of HR efficiency has only a slight effect on genomic stability. The expression of FHA-2D rendered the exponentially growing cell population slightly (but significantly) more sensitive to ionizing radiation. This radiosensitization effect due to the expression of FHA-2D was enhanced when the cells were irradiated with split doses delivered at 24-h intervals. Furthermore, enhancement of radiation sensitivity by split dose irradiation was not seen in contact-inhibited G0/G1 populations, even though the cells expressed FHA-2D. These results suggest that the FHA domain of NBS1 might be an effective molecular target that can be used to induce radiosensitization using low molecular weight chemicals, and that partial inhibition of HR might improve the effectiveness of cancer radiotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.