Abstract

The estrogen receptor (ER) suppresses transcriptional activity of the RelA subunit of nuclear factor-kappaB in a hormone-dependent manner by a mechanism involving both the receptor DNA binding domain and ligand binding domain (LBD). In this study we examine the role of the ER LBD in mediating ligand-dependent RelA transrepression. Both ERalpha and ERbeta inhibit RelA in response to 17beta-estradiol but not in the presence of antihormones. We have identified residues within the ERalpha LBD that are responsible for receptor dimerization and show that dimerization is necessary for transactivation and transrepression. Moreover we have generated mutant receptors that have lost their ability to inhibit RelA but retain their capacity to stimulate transcription and conversely mutants that are transcriptionally defective but capable of antagonizing RelA. Overexpression of p160 and cAMP-response element-binding protein-binding protein/p300 co-activators failed to relieve repression of RelA, which is consistent with the demonstration that RelA inhibition can occur independently of these co-activators. These findings suggest it is unlikely that sequestration of these cofactors required for ER transcriptional activation can account for hormone-dependent antagonism of RelA. The identification of ER mutants that discriminate between transactivation and transrepression implies that distinct surfaces within the LBD are involved in mediating these two receptor functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.