Abstract

Yeast introns contain three highly conserved sequences which are known to be required for splicing of pre-mRNA. Using in vitro mutagenesis, we have synthesized seven point mutations at five different sites in these signals in the yeast actin intron. The mutant introns were then inserted into each of three constructs, which allowed us to assess the consequences both in vivo and in vitro. In virtually every case, we found the efficiency of splicing to be significantly depressed; mature mRNA levels in vivo ranged from 0 to 47% of wild-type. Surprisingly, the tightest mutations were not necessarily at the sites of nucleolytic cleavage and branch formation; these nucleotides are thus highly preferred, but are not absolutely necessary. Moreover, while particular nucleotides are specifically required for the final step in splicing, i.e. 3' cleavage and exon ligation, the predominant consequence of mutation within the conserved signals appears to be the inhibition of assembly of the splicing complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.