Abstract

BackgroundThe incidence of breast cancer among young women (aged ≤40 years) has increased in North America and Europe. Fewer than 10% of cases among young women are attributable to inherited BRCA1 or BRCA2 mutations, suggesting an important role for somatic mutations. This study investigated genomic differences between young- and older-onset breast tumours.MethodsIn this study we characterized the mutational landscape of 89 young-onset breast tumours (≤40 years) and examined differences with 949 older-onset tumours (> 40 years) using data from The Cancer Genome Atlas. We examined mutated genes, mutational load, and types of mutations. We used complementary R packages “deconstructSigs” and “SomaticSignatures” to extract mutational signatures. A recursively partitioned mixture model was used to identify whether combinations of mutational signatures were related to age of onset.ResultsOlder patients had a higher proportion of mutations in PIK3CA, CDH1, and MAP3K1 genes, while young-onset patients had a higher proportion of mutations in GATA3 and CTNNB1. Mutational load was lower for young-onset tumours, and a higher proportion of these mutations were C > A mutations, but a lower proportion were C > T mutations compared to older-onset tumours. The most common mutational signatures identified in both age groups were signatures 1 and 3 from the COSMIC database. Signatures resembling COSMIC signatures 2 and 13 were observed among both age groups. We identified a class of tumours with a unique combination of signatures that may be associated with young age of onset.ConclusionsThe results of this exploratory study provide some evidence that the mutational landscape and mutational signatures among young-onset breast cancer are different from those of older-onset patients. The characterization of young-onset tumours could provide clues to their etiology which may inform future prevention. Further studies are required to confirm our findings.

Highlights

  • The incidence of breast cancer among young women has increased in North America and Europe

  • We reduced the risk for false discovery by limiting the number of genes we investigated to this set of genes which are likely relevant to breast cancer

  • Given that Single nucleotide variant (SNV) comprise a large proportion of somatic mutations, we reported the SNV-only mutational load, and tested difference by age groups

Read more

Summary

Introduction

The incidence of breast cancer among young women (aged ≤40 years) has increased in North America and Europe. Its estimated global incidence was 1.68 million in 2012, accounting for 25% of cancer diagnoses among women of all ages [1]. Among women under the age of 40 in the United States, breast cancer accounts for over 40% of cancer diagnoses [2]. Epidemiological studies demonstrated a trend of rising incidence among Canadian women between 1969 and 2012, and among women in the United States from 2004 to 2015 [5, 6]. A European study showed an average increase of 3 and 1% annually among women aged 20–29, and 30–39, respectively [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call