Abstract
The plasma membrane of Plasmodium sporozoites is uniformly covered by the glycosylphosphatidylinositol (GPI)-anchored circumsporozoite (CS) protein. Sporozoites form in the mosquito midgut through a budding process that occurs within a multinucleate oocyst underneath the basal lamina of the gut. Earlier genetic studies established that normal sporozoite development requires CS. Mutant parasites lacking CS [CS (-)] do not form sporozoites. Ultrastructural analysis of the oocysts from these parasites revealed that there is an early block in the cytokinesis that occurs within the multinucleate oocysts to generate individual sporozoites. Parasites that are hypomorphic for CS expression gave rise to sporozoites with abnormal morphology. These results proved that CS plays a direct role in the maturation of oocysts and in the normal budding of sporozoites. In this article, we examined if the membrane localization of CS via a GPI-anchor, is crucial for its function during sporozoite formation. We generated three mutants in Plasmodium berghei CS, CS-DeltaGPI, CS-TM1 and CS-TM2. In CS-DeltaGPI, we deleted the signal sequence required for the addition of a GPI-anchor to CS. The resulting protein was found only in the cytoplasm of the oocyst. In CS-TM1 and CS-TM2, the GPI-anchor addition sequence of CS was substituted by the transmembrane domain and truncated (to different degrees) cytoplasmic tail of Plasmodium thrombospondin-related anonymous protein (TRAP). The resulting CS protein was detected on the plasma membrane of the oocysts. The amount of CS in the mutants was similar to that of wild type. The sporozoite budding and development were abrogated in both CS-DeltaGPI and CS-TM mutants. The ultrastructure of the mutant oocysts was indistinguishable from that of the CS (-) parasites. Our results suggest that the GPI-anchor of the CS protein is required for sporogenesis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have