Abstract
Heterotrimeric G proteins, consisting of alpha, beta, and gamma subunits, transduce environmental signals through coupling to plasma membrane-localized receptors. We previously reported that the filamentous fungus Neurospora crassa possesses a Galpha protein, GNA-1, that is a member of the Galphai superfamily. Deletion of gna-1 leads to defects in apical extension, differentiation of asexual spores, sensitivity to hyperosmotic media, and female fertility. In addition, Deltagna-1 strains have lower intracellular cAMP levels under conditions that promote morphological abnormalities. To further define the function of GNA-1 in signal transduction in N. crassa, we examined properties of strains with mutationally activated gna-1 alleles (R178C or Q204L) as the only source of GNA-1 protein. These mutations are predicted to inhibit the GTPase activity of GNA-1 and lead to constitutive signaling. In the sexual cycle, gna-1(R178C) and gna-1(Q204L) strains are female-fertile, but produce fewer and larger perithecia than wild type. During asexual development, gna-1(R178C) and gna-1(Q204L) strains elaborate abundant, long aerial hyphae, produce less conidia, and possess lower levels of carotenoid pigments in comparison to wild-type controls. Furthermore, gna-1(R178C) and gna-1(Q204L) strains are more sensitive to heat shock and exposure to hydrogen peroxide than wild-type strains, while Deltagna-1 mutants are more resistant. In contrast to Deltagna-1 mutants, gna-1(R178C) and gna-1(Q204L) strains have higher steady-state levels of cAMP than wild type. The results suggest that GNA-1 possesses several Gbetagamma-independent functions in N. crassa. We propose that GNA-1 mediates signal transduction pathway(s) that regulate aerial hyphae development and sensitivity to heat and oxidative stresses, possibly through modulation of cAMP levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.