Abstract

Natural resistance associated macrophage protein 5 (NRAMP5) is a key transporter for cadmium (Cd) uptake by rice roots; however, the effect of OsNRAMP5 on Cd translocation and redistribution in rice plants remains unknown. In this study, an extremely low Cd-accumulation mutant (lcd1) and wild type (WT) plants were utilized to investigate the effect of OsNRAMP5 mutation on Cd translocation and redistribution via the xylem and phloem and its possible physiological mechanism using field, hydroponic and isotope-labelling experiments. The results showed that OsNRAMP5 mutation reduced xylem and phloem transport of Cd, due to remarkably lower Cd translocation from roots to shoots and from the leaves Ⅰ–Ⅲ to their corresponding nodes, as well as lower Cd concentrations in xylem and phloem sap of lcd1 compared to WT plants. Mutation of OsNRAMP5 reduced Cd translocation from roots to shoots in lcd1 plants by increasing Cd deposition in cellulose of root cell walls and reducing OsHMA2-and OsCCX2-mediated xylem loading of Cd, and the citric acid- and tartaric acid-mediated long-distance xylem transport of Cd. Moreover, OsNRAMP5 mutation inhibited Cd redistribution from flag leaves to nodes and panicles in lcd1 plants by increasing Cd sequestration in cellulose and vacuoles, and decreasing OsLCT1-mediated Cd phloem transport in flag leaves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call