Abstract

Repeated efforts to estimate the genomic deleterious mutation rate per generation (U) in Drosophila melanogaster have yielded inconsistent estimates ranging from 0.01 to nearly 1. We carried out a mutation-accumulation experiment with a cryopreserved control population in hopes of resolving some of the uncertainties raised by these estimates. Mutation accumulation (MA) was carried out by brother sister mating of 150 sublines derived from two inbred lines. Fitness was measured under conditions chosen to mimic the ancestral laboratory environment of these genotypes. We monitored the insertions of a transposable element, copia, that proved to accumulate at the unusually high rate of 0.24 per genome per generation in one of our MA lines. Mutational variance in fitness increased at a rate consistent with previous studies, yielding a mutational coefficient of variation greater than 3%. The performance of the cryopreserved control relative to the MA lines was inconsistent, so estimates of mutation rate by the Bateman-Mukai method are suspect. Taken at face value, these data suggest a modest decline in fitness of about 0.3% per generation. The element number of copia was a significant predictor of fitness within generations; on average, insertions caused a 0.76% loss in fitness, although the confidence limits on this estimate are wide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.