Abstract

To investigate the development of enrofloxacin resistance among Escherichia coli isolates obtained from chickens by determining mutant-prevention concentrations (MPCs) and sequence the quinolone resistance-determining regions (QRDRs) of gyrA and parC genes in selected isolates. 15 chicken-derived E coli isolates. For all isolates, MPC and minimal inhibition concentration (MIC) of enrofloxacin were determined. The MPCs and maximum serum drug concentrations attained with enrofloxacin doses recommended for treatment of E coli infections in chickens were compared. Mutation frequencies and QRDR sequence changes in gyrA and parC were also determined. In 2 of 15 E coli strains, MPCs were low (0.016 and 0.062 microg/mL), MPC:MIC ratios were 2 and 4, and the GyrA and ParC proteins had no mutations. In 9 susceptible isolates with a GyrA point mutation, MPCs ranged from 2 to 16 microg/mL. For isolates with double mutations in GyrA and a single mutation in ParC, MPCs were > 32 microg/mL (several fold greater than the maximal plasma concentration of enrofloxacin in chickens); mutation frequencies were also much lower, compared with frequencies for single-mutation isolates. For E coli infections of chickens, MPC appears to be useful for determining enrofloxacin-dosing strategies. The high MPC:MIC ratio may result in enrofloxacin-treatment failure in chickens infected with some wild-type gyrA E coli isolates despite the isolates' enrofloxacin susceptibility (MICs 0.125 to 1 microg/mL). For infections involving isolates with high MPCs, especially those containing mutations in gyrA and parC genes, treatment with combinations of antimicrobials should be adopted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.