Abstract

Tumor-associated p53 mutations induce activities different from wild-type p53, thus causing loss of the protein's tumor inhibition function. The cells carrying p53 mutations have more aggressive characteristics related to invasion, metastasis, proliferation, and cell survival. By comparing the gene expression profiles of mutant p53 (mutp53) and mutp53 silenced cohorts, we found that FOS-related antigen-1 (FRA-1), which is encoded by FOSL1, is a potential effector of mutp53-mediated metastasis. We demonstrate that the expression of FRA-1, a gatekeeper of mesenchymal-epithelial transition, is elevated in the presence of p53 mutations. Mechanistically, mutant p53 cooperates with the transcription factor ELK1 in binding and activating the promoter of FOSL1, thus fostering lung metastasis. This study reveals new insights into how mutant p53 contributes to metastasis in breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call