Abstract
Although most components of the mitochondrial translation apparatus are encoded by nuclear genes, all known molecular defects associated with impaired mitochondrial translation are due to mutations in mitochondrial DNA. We investigated two siblings with a severe defect in mitochondrial translation, reduced levels of oxidative phosphorylation complexes containing mitochondrial DNA (mtDNA)-encoded subunits, and progressive hepatoencephalopathy. We mapped the defective gene to a region on chromosome 3q containing elongation factor G1 (EFG1), which encodes a mitochondrial translation factor. Sequencing of EFG1 revealed a mutation affecting a conserved residue of the guanosine triphosphate (GTP)-binding domain. These results define a new class of gene defects underlying disorders of oxidative phosphorylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.