Abstract

Mutations in several mitochondrial DNA and nuclear genes involved in mitochondrial protein synthesis have recently been reported in combined respiratory chain deficiency, indicating a generalized defect in mitochondrial translation. However, the number of patients with pathogenic mutations is small, implying that nuclear defects of mitochondrial translation are either underdiagnosed or intrauterine lethal. No comprehensive studies have been reported on large cohorts of patients with combined respiratory chain deficiency addressing the role of nuclear genes affecting mitochondrial protein synthesis to date. We investigated a cohort of 52 patients with combined respiratory chain deficiency without causative mitochondrial DNA mutations, rearrangements or depletion, to determine whether a defect in mitochondrial translation defines the pathomechanism of their clinical disease. We followed a combined approach of sequencing known nuclear genes involved in mitochondrial protein synthesis (EFG1, EFTu, EFTs, MRPS16, TRMU), as well as performing in vitro functional studies in 22 patient cell lines. The majority of our patients were children (<15 years), with an early onset of symptoms <1 year of age (65%). The most frequent clinical presentation was mitochondrial encephalomyopathy (63%); however, a number of patients showed cardiomyopathy (33%), isolated myopathy (15%) or hepatopathy (13%). Genomic sequencing revealed compound heterozygous mutations in the mitochondrial transfer ribonucleic acid modifying factor (TRMU) in a single patient only, presenting with early onset, reversible liver disease. No pathogenic mutation was detected in any of the remaining 51 patients in the other genes analysed. In vivo labelling of mitochondrial polypeptides in 22 patient cell lines showed overall (three patients) or selective (four patients) defects of mitochondrial translation. Immunoblotting for mitochondrial proteins revealed decreased steady state levels of proteins in some patients, but normal or increased levels in others, indicating a possible compensatory mechanism. In summary, candidate gene sequencing in this group of patients has a very low detection rate (1/52), although in vivo labelling of mitochondrial translation in 22 patient cell lines indicate that a nuclear defect affecting mitochondrial protein synthesis is responsible for about one-third of combined respiratory chain deficiencies (7/22). In the remaining patients, the impaired respiratory chain activity is most likely the consequence of several different events downstream of mitochondrial translation. Clinical classification of patients with biochemical analysis, genetic testing and, more importantly, in vivo labelling and immunoblotting of mitochondrial proteins show incoherent results, but a systematic review of these data in more patients may reveal underlying mechanisms, and facilitate the identification of novel factors involved in combined respiratory chain deficiency.

Highlights

  • Combined respiratory chain deficiency characterizes a subset of mitochondrial diseases exhibiting decreased activities of multiple complexes of the oxidative phosphorylation system, leading to an impairment of ATP synthesis (DiMauro and Schon, 2003; Smits et al, 2010a)

  • There were some clinical similarities defined in small number of patients, such as patients with liver disease, cardiomyopathy or agenesis of the corpus callosum, there was a substantial overlap, making it difficult to form homogeneous phenotypic groups

  • By sequencing the other nuclear genes that might affect mitochondrial protein synthesis, we identified a total of three single heterozygous non-synonymous nucleotide changes in three different genes (c.34T 4 C, p.Tyr12His in MRPS16; c.860T 4 A, p.Leu287His in EFTs; c.1990G4A, p.Val664Ile in EFG1) in three independent patients, but all three changes are listed in the National Centre for Biotechnology Information database as single nucleotide polymorphisms

Read more

Summary

Introduction

Combined respiratory chain deficiency characterizes a subset of mitochondrial diseases exhibiting decreased activities of multiple complexes of the oxidative phosphorylation system, leading to an impairment of ATP synthesis (DiMauro and Schon, 2003; Smits et al, 2010a). Mitochondrial DNA depletion is a frequent cause of severe childhood (hepato)encephalomyopathies and is responsible for 50% of combined respiratory chain deficiencies in childhood (Sarzi et al, 2007). Nuclear DNA mutations can account for combined respiratory chain deficiency by negatively affecting mitochondrial maintenance, translation and/or transport. It has been hypothesized that defective nuclear genes, which function in mitochondrial translation, are the primary cause of combined respiratory chain deficiency in patients that present with neither mitochondrial DNA mutations nor mitochondrial depletion (Jacobs and Turnbull, 2005; Smits et al, 2010b)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.