Abstract

LexA repressor of Escherichia coli is inactivated by a specific cleavage reaction that requires activated RecA protein in vivo. This cleavage reaction can proceed in vitro in the presence of activated RecA or as an intramolecular RecA-independent reaction, termed autodigestion, that is stimulated by alkaline pH. Here we describe a set of LexA mutant proteins that undergo a greatly increased rate of specific cleavage in vivo, compared with wild-type LexA. Efficient in vivo cleavage of these mutant proteins also took place without RecA. Several lines of evidence suggest that cleavage occurred via a mechanism similar to autodigestion. These mutations changed Gln-92, which lies near the cleavage site, to tyrosine, phenylalanine, or tryptophan. The latter mutation increased the rate of cleavage approximately 500-fold. These findings imply that the rate of wild-type LexA cleavage has been optimized during evolution to make the SOS system properly responsive to DNA-damaging treatments. Availability of these mutants will aid in the understanding of rate-limiting steps in intramolecular reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.