Abstract

The most common fluorescent lamps in use today in homes and businesses in the United States, ‘coolwhite’ fluorescent lamps, emit light that is mutagenic for Salmonella. Strains that carry both a uvrB mutation and plasmid pKM101 are extremely susceptible to this light-induced mutation. Both base substitution and frameshift mutations can be induced without substantial lethal effects on the bacteria. Induced mutations accumulate essentially as a linear function of the time bacteria are exposed to illumination. Of Salmonella histidine-requiring strains with known nucleotide target sequences (Hartman et al., 1986; Cebula and Koch, 1989, 1990), strains either carrying one of the base substitution mutations, hisG428 and hisG46, or one of the frameshifts, hisC3076 and hisD6610, are most highly mutagenized whereas frameshift strains with hisD6580 and hisD3052 exhibit lower rates of mutagenesis. Mutagenicity does not appear to require the presence of oxygen. A filter blocking wavelengths below 370 nm eliminates mutagenesis. Polystyrene, cellulose acetate and, especially, mylar and glass filters reduce mutagenesis, indicating that at least some of the mutagenic effects can be attributed to leakage of radiations below 290 nm (far-ultraviolet light) from ‘coolwhite’ lamps. The more recently introduced fluorescent ‘softwhite’ lamps are roughly 10-fold less mutagenic at approximately equal light intensity. Incandescent light bulbs are much less mutagenic than are these fluorescent lamps. Our mutational data correlate closely with previous results in eukaryotic cells (Jacobson and Krell, 1982). A uvrB recA Salmonella double mutant is hypersensitive to the lethal effects of coolwhite fluorescent light, even when illuminated through the lids of glass Petri dishes. Thus, appropriate Salmonella strains would appear to be simple and useful screens for both the mutagenic and the lethal activities of fluorescent lamps. These systems are amenable to classroom laboratory use as relatively safe and effective means of demonstrating environmental mutagenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.