Abstract

Decay of /sup 125/I unifilarly incorporated as 5-iodo-2'-deoxyuridine (IdUrd) into DNA of V79 Chinese hamster cells was approximately an order of magnitude more effective in inducing both 6-thioguanine-resistant mutation and cell inactivation than external X rays under equivalent conditions. RBEs of mutation and killing induced by /sup 125/I decays, compared with 170-kVp X rays of low LET, were approx. = 11 for mutation (ratio of the induction rate in frequency/rad = 11.3 X 10/sup -7/ (/sup 125/I)/100 X 10/sup -7/ (X rays at -79/sup o/C)) and approx. = 10 for cell inactivation (D/sub 0/ ratio = 505 rad (X rays at -79/sup o/C)/52 rad (/sup 125/I)). These RBE values may well exceed the reported maximum values for high-LET radiation in the LET range of 80-110 keV/..mu..m, suggesting that the Auger effect is different from the high-LET radiation effect alone. Thus these biological consequences arise not only from radiation effects of Auger electrons on the immediate vicinity in DNA, but also from the nonionogenic effect through charge transfer processes. In addition, higher inductions of mutation and killing by external X rays in unifilarly IdUrd-substituted cells than in ordinal cells were observed, suggesting a possible involvement of X-ray-induced Auger phenomenon in iodinemore » in DNA.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call