Abstract

Mature microfiltration (MF) membrane is a low-cost, effective, and promising technology to provide affordable purified water for people living in developing countries. However, the lack of disinfection ability and inherent membrane fouling problems have seriously restricted the large-scale application of conventional MF treatment system in producing safe drinking water. In this work, zwitterionic silver nanoparticles (AgNPs) with surface modification of poly(carboxybetaine acrylate-co-dopamine methacryamide) (PCBDA) copolymers were robustly immobilized onto commercial polyamide MF membrane via mussel-inspired chemistry for water disinfection. The designed microfiltration membrane, named as PCBDA@AgNPs-MF, exhibited integrated properties of high and stable payload of AgNPs, broad-spectrum anti-adhesive and antimicrobial activities, and easy removal of inactivated microbial cells from membrane surface. Ascribing to the synergetic effect of anti-adhesive and antimicrobial features brought by zwitterionic PCBDA@AgNPs, the biofilms growth on polyamide membrane surface was significantly inhibited, which showed potential access to achieve long-term biofouling resistance and maintain water flux for conventional MF membrane. As water disinfection device, these attributes enabled PCBDA@AgNPs-MF to effectively disinfect the model and natural bacteria-contaminated water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.