Abstract

Absolute pitch (AP) is the ability to identify and name the pitch of a sound without external reference. Often, accuracy and speed at naming isolated musical pitches are correlated with demographic, biological, and acoustical parameters to gain insight into the genesis and evolution of this ability in specific cohorts. However, the majority of those studies were conducted in North America, Europe, or Asia. To fill this gap, here we investigated the pitch-naming performance in a large population of Brazilian conservatory musicians (N = 200). As previously shown, we found that the population performance was rather a continuum than an “all-or-none” ability. By comparing the observed distribution of correct responses to a theoretical binomial distribution, we estimated the prevalence of AP as being 18% amongst regular music students. High accuracy thresholds (e.g., 85% of correct responses) yielded a prevalence of 4%, suggesting that AP might have been underestimated in previous reports. Irrespective of the threshold used, AP prevalence was higher in musicians who started their musical practice and formal musical education early in life. Finally, we compared the performance of those music students (average proficiency group) with another group of students selected to take part in the conservatory orchestra (high proficiency group, N = 30). Interestingly, the prevalence of AP was higher in the latter in comparison to the former group. In addition, even when the response was incorrect, the mean absolute deviation from the correct response was smaller in the high proficiency group compared to the average proficiency group (Glass's Δ: 0.5). Taken together, our results show that the prevalence of AP in Brazilian students is similar to other non-tonal language populations, although this measure is highly dependent on the scoring threshold used. Despite corroborating that early involvement with musical practice and formal education can foster AP ability, the present data suggest that music proficiency may also play an important role in AP expression.

Highlights

  • Evolution of auditory and vocal systems has reached high levels of complexity in humans, allowing the emergence of both speech and music (Patel, 2003)

  • Using the threshold of 85% of exactly correct responses (Deutsch et al, 2006), we observed a prevalence of 4%

  • We demonstrated a white-key preference over black-key notes in subjects without absolute pitch (AP) ability, which suggests that this preference is not related to acoustic properties of pitch

Read more

Summary

Introduction

Evolution of auditory and vocal systems has reached high levels of complexity in humans, allowing the emergence of both speech and music (Patel, 2003). In this respect, one important feature of sound is pitch, which grants prosody to spoken speech and melody to music. It is acknowledged that the prevalence of AP can be as high as 75% among specific cohorts, as in music schools and conservatories (Baharloo et al, 1998; Gregersen, 1999; Deutsch et al, 2006, 2009; Miyazaki et al, 2012; see Sergeant and Vraka, 2014)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.