Abstract
We propose a method for music genre classification based on a Self-Organizing Map (SOM) - type network. Music pieces are viewed as sequences of pitch and timbre signals. We define a similarity measure between these sequences, derived from the Levenshtein (edit) distance. In contrast to the standard Levenshtein distance, our similarity measure is able to operate on a continuous vector space. Using this measure, we map the input music pieces on a SOM. The SOM is trained using a special string adjustment mechanism, which is determined by an algebraic equation. Our method turns out to achieve better classification accuracy than some other recent techniques. The feature set identified by SOM provides superior classifier accuracy compared to the same classifier applied on a random feature set of the same size. On standard benchmarks, two of our derived classifiers achieve accuracies of 97.32% (using a slow kNN learning algorithm), respectively 95.20% (using a SOM - type algorithm).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.