Abstract

The Pacific Northwest Geodesic Array at Central Washington University collects telemetered streaming data from 450 GPS stations. These real-time data are used to monitor and mitigate natural hazards arising from earthquakes, volcanic eruptions, landslides, and coastal sea-level hazards in the Pacific Northwest. Recent improvements in both accuracy of positioning measurements and latency of terrestrial data communication have led to the ability to collect data with higher sampling rates. For seismic monitoring applications, this means 1350 separate position streams from stations located across 1200 km along the West Coast of North America must be able to be both visually observed and automatically analyzed at a sampling rate of up to 1 Hz. Our goal is to efficiently extract and visualize useful information from these data streams. We propose a method to visualize the geodetic data by clustering the signal types with a Self-Organizing Map (SOM). The similarity measure in the SOM is determined by the similarity of signals received from GPS stations. Signals are transformed to symbol strings, and the distance measure in the SOM is defined by an edit distance. The symbol strings represent data streams and the SOM is dynamic. We overlap the resulted dynamic SOM on the Google Maps representation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.