Abstract
Today, music is a very important and perhaps inseparable part of people's daily life. There are many genres of music and these genres are different from each other, resulting in people to have different preferences of music. As a result, it is an important and up-to-date issue to classify music and to recommend people new music in music listening applications and platforms. Classifying music by their genre is one of the most useful techniques used to solve this problem. There are a number of approaches for music classification and recommendation. One approach is based on the acoustic characteristics of music. In this study, a music genre classification system and music recommendation engine, which focuses on extracting representative features that have been obtained by a novel deep neural network model, have been proposed. Acoustic features extracted from these networks have been utilised for music genre classification and music recommendation on a data set.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have